

Part 1: A primer on near repeat patterns

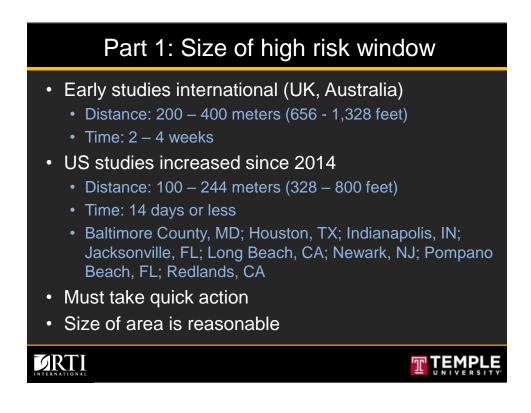
- · Definitions and terms
- Existing knowledge
- Importance of considering crime prevention potential

Part 2: NR Crime Prevention Potential Calculator Part 3: Example analysis in Philadelphia



Part 1: Background

What is the near repeat pattern of burglary and why should I care?


TEMPL

Part 1: Near repeat burglary patterns

- Burglary occurrence associated with increased risk for neighbors
- Risk decays over time and space
- Size/duration of space-time high risk window varies

What do we know about near repeat burglary patterns?

Part 1: Where do near repeats occur?

- Urban backcloth characteristics
- · Near repeats more likely if:
 - Housing type and layout are similar
 - Public and other 'at risk' private housing complexes (Moreto et al, 2014)
 - Pawn shops (Moreto et al, 2014)
 - Drug markets (Moreto et al, 2014)
 - Burglar residences (Moreto et al, 2014)
 - Rivers (Piza and Carter, 2017)
 - Railroad tracks (Piza and Carter, 2017)

Part 1: Where do near repeats occur?

• Socio-economic indicators; micro and meso levels

	Piza and Carter, 2017 (micro)	Nobles et al 2016 (neighborhood)	Zhang et al 2015 (neighborhood)
Concentrated disadvantage	Positive	Positive	
Residential instability	Positive	Positive	
Housing density	Positive		Positive
Racial heterogeneity	Positive	Positive	Positive
Young male population	Positive	Positive	

Part 1: What works to prevent near repeats?

- Hot spots policing
 - Yes
 - Patrolled during high burglary times 26% reduction (Fielding and Jones, 2012)
 - Patrolled places with past burglary concentration 21% reduction (Santos and Santos, 2015a,b)

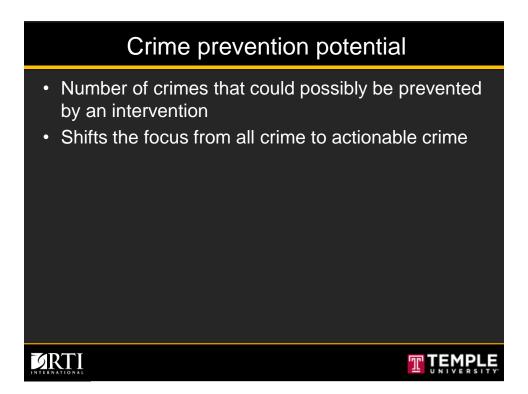

TEMPL

- No
 - RCT in Holland (Elffers et al, 2018)
 - Why?
 - Most repeats occurred same day as initiator
 - Relatively few repeats overall

INTERNATIONAL

Part 1: What works to prevent near repeats?

 Non-police centric strategies 					
	Repeat victimization	Near repeat victimization micro (Neighborhood)	Near repeat victimization (Micro)		
Crime prevention information	Yes	Positive	Mixed, positive		
Target hardening tools	Yes	Positive	Mixed, positive		
Notification of increased risk	Yes	Positive	Mixed, positive		
Offer of a security audit	Yes	Positive	Mixed, positive		
Uniformed personnel	Yes	Positive	Mixed, positive		
References	Anderson, et al 1995; Chenery, Holt, & Pease, 1997; Forrester, Chatterton, Pease, & Brown, 1988	Johnson, et al 2017	Groff and Taniguchi, 2018; Wellsmith and Birks, 2008		


Part 1: Tackling near repeat burglary

Advantages:

- Leverages volunteer corps for crime prevention
- · Activates citizens in the co-production of community safety
- Basis for partnerships with other agencies and nonprofit groups
- Can be very low cost

Part 1: Tackling near repeat burglary Challenges All burglaries versus actionable burglaries NRC uses all burglaries Intervention focus: Stop pattern versus prevent initiating burglary Delays in reporting burglaries Non reporting of burglaries Determining the crime prevention potential of an intervention

Part 1: Measurement differences

NRC

- Each pair is classified so individual burglaries might 'count' toward more than one pair
- Burglaries that occur on the same day as the originator event are not preventable but count as repeats
- Distance is measured with Euclidean or Manhattan

Part 1: Value of CPP

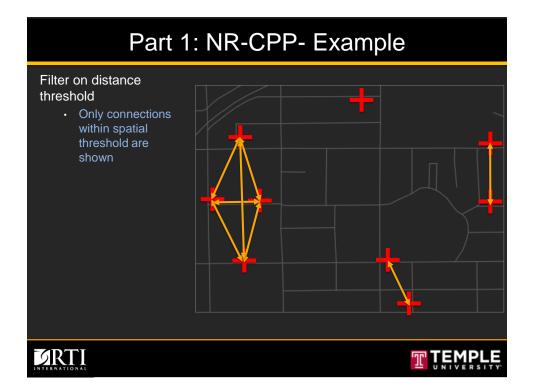
- For practitioners
 - Should we undertake this intervention?
 - Was the intervention successful?
 - Is it worth continuing?
 - Measured at micro level

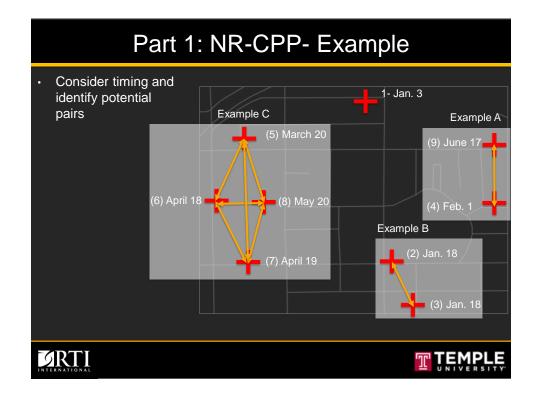
Realistic metric for evaluating program success

Part 1: A motivating scenario

Consider the scenario

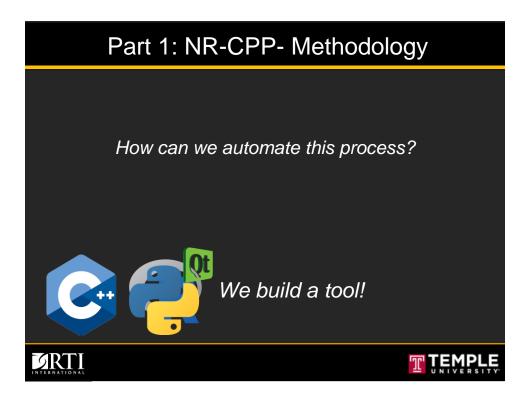
Two cities have 1,000 burglaries a year and implement an intervention to reduce that number...

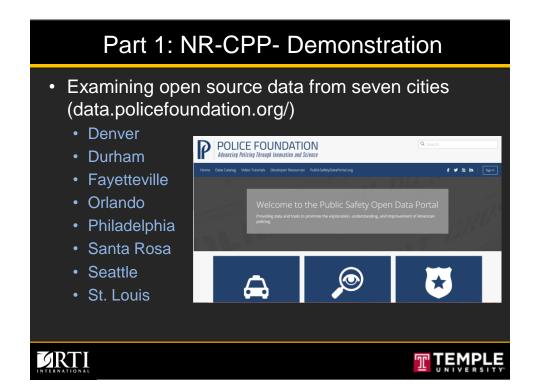

Agency B


- Brigglaviersperdentation,50the number of
- bwighesiessthat grane down repeats is
- New program shelved because low ROI
 Burglaries in program areas go down by 50, a 50% reduction
- Program expanded because of success

TEMPL

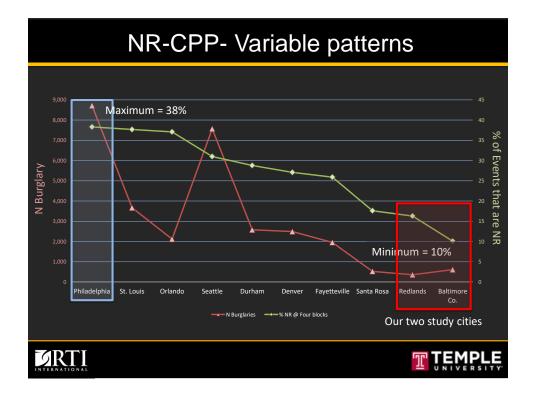
URTI


Part 1: NR-CPP- Example 9 burglaries from January 1st through June 30th High risk threshold • 800 feet • 30 days ØRTI



Part 1: NR-CPP- Example						
(9) June 17	Example A					
						Event Allocated?
(4) Feb. 1						\checkmark
No near	repea	at eve	nts in t	these	examp	les
(2) Jan. 18			Exa	mple B		
(3) Jan. 18						Event Allocated?
						\checkmark

Part 1: NR-CPP- Example						
(5) March 20	Example C					
(6) April 18						Event already allocated
						\checkmark
Two near repea	at ev	ents	in the	se ex	ampl	es
						X
						X
INTERNATIONAL						\checkmark


Part 1: NR-CPP- Results

	Baltimore Co.	Redlands	Denver	Durham	Fayetteville
3 Blocks 4 Weeks	5.89	7.76	14.97	14.30	14.51
	Orlando	Philadelphia	Santa Rosa	Seattle	St. Louis
3 Blocks 4 Weeks	21.49	21.80	12.45	13.98	19.62

	Part 1: NR-CPP- Results						
	Baltimore Co.	Redlands	Denver	Durham	Fayetteville		
4 Blocks 4 Weeks	8.18	15.24	23.90	21.98	20.53		
	Orlando	Philadelphia	Santa Rosa	Seattle	St. Louis		
4 Blocks 4 Weeks	30.77	35.84	16.47	26.31	32.97		
					·		

Take away points

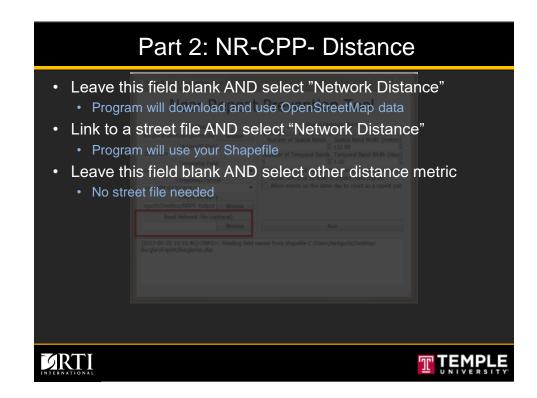
- Global NR risk ≠ actionable NR risk
- The CPP of NR varies by city and within cities
- CPP should be integrated into analysis process
 - · Calculate CPP prior to designing intervention
 - Drill down the cone of resolution to identify 'where'
- Quantify crime problem
 - · Analysis: Should we undertake this intervention?
 - · Assessment: Was the intervention successful?

QUESTIONS?

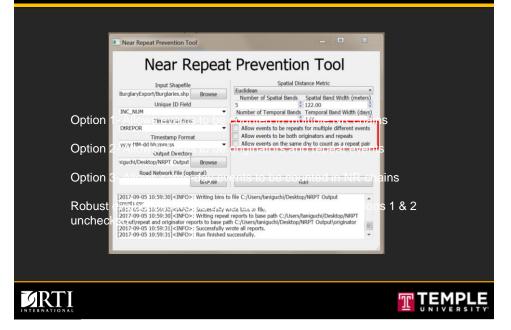
Part 2: Example using NR-CPPC

• All written guides, presentations and software are available at:

https://www.policefoundation.org/projects/translatin g-near-repeat-theory-into-a-geospatial-policingstrategy/


- Scroll down and look for Resources & Tools part of page
- Download software and sample data
- Read user guide

Part 2: NR-CPPC Interface


Input Shapefile	Spatial Distance Metric	
Unique 10 Field INC_NUM Timestamp Field DREPOR Timestamp Format yyyy-MM-dd hh.mm:ss Output Directory iguch/Desktop/NRPT Output Broad Network File (optional)	Allow events on the same day to count as a arowse	f Width (day fferent even epeats
	ading field names from shapefile C:/Users/taniguchi/Desktop/)(qq

Part 2: NR-CPP- Distance measurement _ 0 x Near Repeat Prevention Tool Near Repeat Prevention Tool Spatial Distance Metric Input Shapefile Euclidean BurglaryExport/Burglaries.shp Browse Manhattan Unique ID Field Network INC NUM 5 \$ 7.00 Timestamp Field DIREPOR Allow events to be repeats for multiple different events Allow events to be both originators and repeats Timestamp Format Allow events on the same day to count as a repeat pair yyyy-MM-dd hh:mm:ss Output Directory niguchi/Desktop/NRPT Output Browse Road Network File (optional) Browse Run [2017-09-05 10:59:30]<INFO>: Writing bins to file C:/Users/taniguchi/Desktop/NRPT Output counts.csv (2017-09-05 10:59:30]<INFO>: Successfully wrote bins to file. [2017-09-05 10:59:30]<INFO>: Writing repeat reports to base path C:/Users/taniguchi/Desktop/NRPT Output/repeat and originator reports to base path C:/Users/taniguchi/Desktop/NRPT Output/originator [2017-09-05 10:59:31]<INFO>: Successfully wrote all reports. [2017-09-05 10:59:31]<INFO>: Run finished successfully. ≣ MPL

Part 2: NR-CPP- Distance measures W Winnemac Ave Manhattan Distance P W Argyle Z W Argyle St 4 aim /ashtena **Euclidean Distance** 0 Þ W Ains **Network Distance** (D W Gunnison St **ØRTI** TEMPL

Part 2: NR-CPPC- Controlling what is counted

Part 2: NR-CPP- Output files

	Α	В	С	D	E
1	spatial_min	spatial_max	temporal_min	temporal_max	count
2	0	122	0	7	24
3	0	122	0	14	42
4	0	122	0	21	58
5	0	122	0	28	78
6	0	244	0	7	55
7	0	244	0	14	107
8	0	244	0	21	162
9	0	244	0	28	218
10	0	366	0	7	99
11	0	366	0	14	195
12	0	366	0	21	291
13	0	366	0	28	397
14	0	488	0	7	145
15	0	488	0	14	296
16	0	488	0	21	440
17	0	488	0	28	600
18	0	610	0	7	183
19	0	610	0	14	376
20	0	610	0	21	575
21	0	610	0	28	803

Program writes out file called count.csv that has:

- 1. Count of events per space-time bin
- 2. Spatial min and max
- 3. Temporal min and max

Part 2: NR-CPP- Output files

- 4	A	В	Program writes out one file for each
1	originator_event_ids	repeat_event_id	space-time bin that begin with 'originator'
2	201302000310	201302004383	
3	201302003381	201302006451	Each file has the id numbers for all events
4	201302002742	201302007175	that were originators and the id numbers
5	201302011220	201302012119	for all their associated repeat events
6	201302011220	201302012715	
7	201302011220	201302013609	1. Originator_event_ids – may be
8	201302009513	201302014014	duplicates
9	201302010665	201302014294	2. Repeat_event_id
10	201302011220	201302017427	
1	1 201302017844	201302019577	
13	2 201302019295	201302024054	
13	3 201302017844	201302024446	
14	4 201315034308	201302024989	
1	5 201302026302	201302029601	

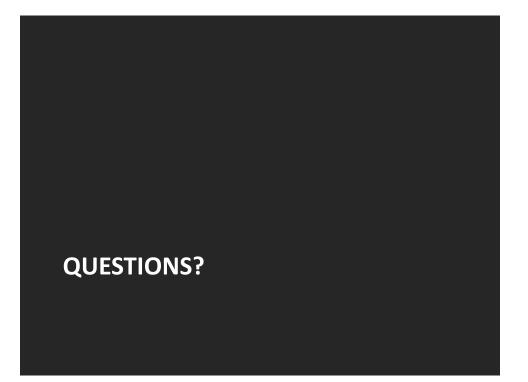
Part 2: NR-CPP- Output files

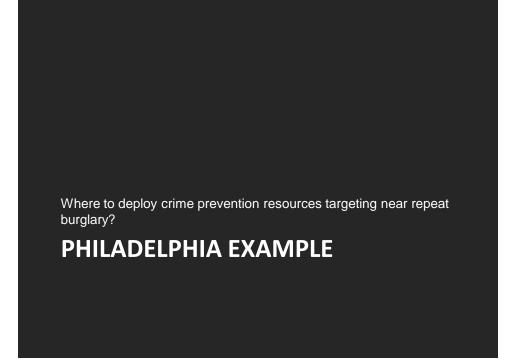
	А	В	С	D
1	event_id	repeat_even	t_ids	
2	130000189	130031086	130021664	
3	130000358	130004269		
4	130000679	130003156		
5	130000725	130003438	130002500 1	30005304
6	130000816	130010869		
7	130000946	130000725	130003438 1	30002500
8	130001105	130020979		
9	130001733	130009745	130009066 1	30009884
10	130001884	130004322		
11	130002921	130003987		
12	130002995	130003084	130006023	
13	130003084	130005910	130006199	

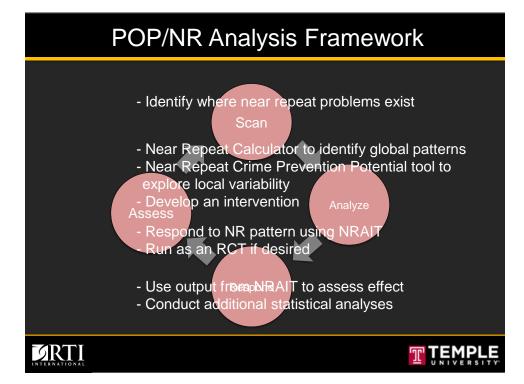
Program writes out one file for each space-time bin that begin with 'repeat'

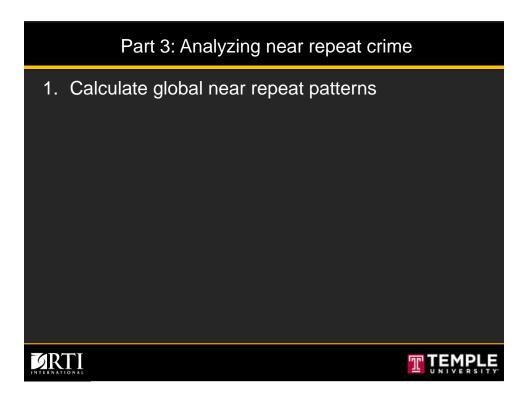
Each file has the id numbers for all events that were originators and the id numbers for all their associated repeat events

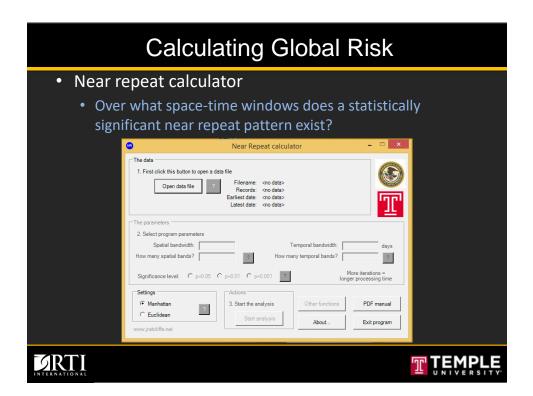
- 1. Event_id each record is a unique originator id
- 2. Repeat_event_ids ids of repeat events separated by pipe

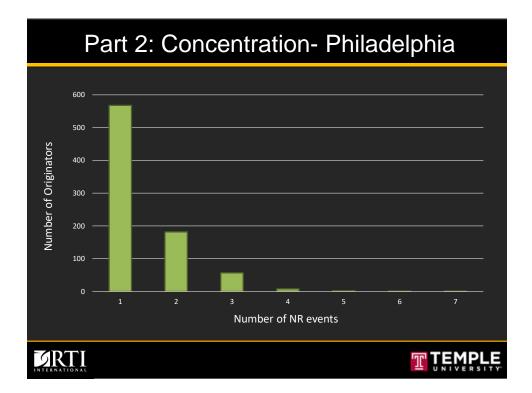

Note: ArcMap reads pipe as NULL

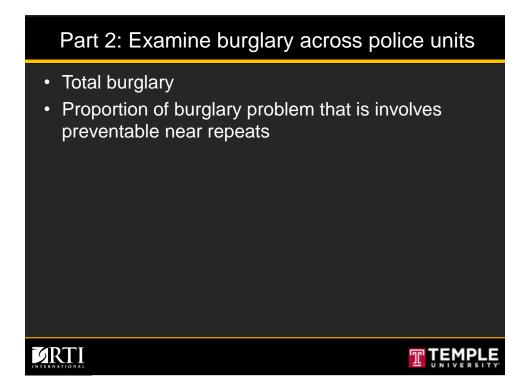


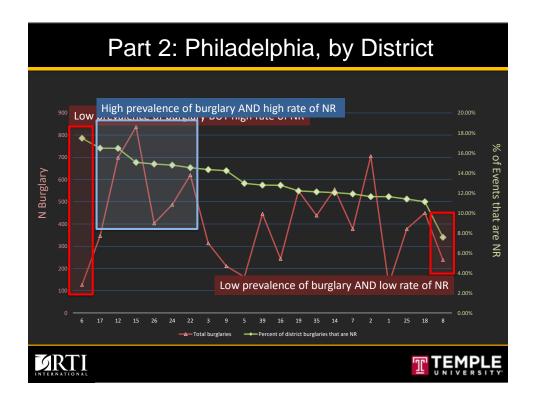



Part 2: Using output from CPPC

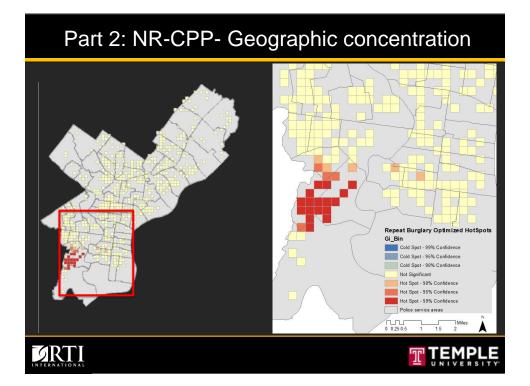

- Number of preventable near repeats
- Proportion of all burglaries that are near repeats
- Geographic concentration in the locations of near repeats

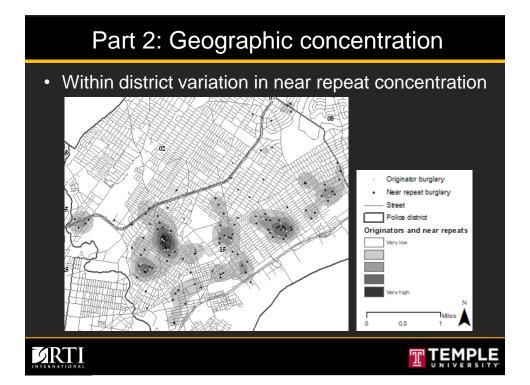

Calculating Global Risk- Example

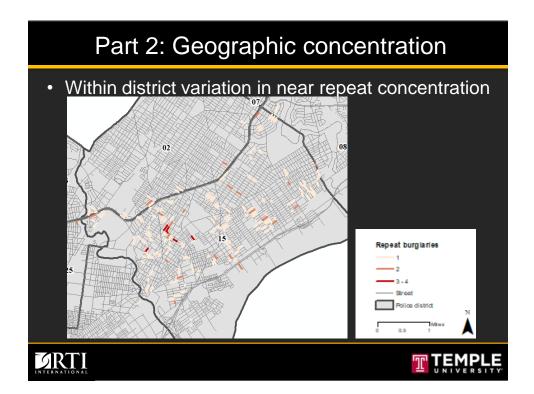

Baltimore County, MD


- Significant space-time risk
- Near repeat pattern exists

	0-7 Days	8-14 Days	15-21 Days	22-28 Days
Same location	5.18	1.58	0.00	8.14
1 to 400 ft.	4.46	1.55	1.24	1.09
401 to 800 ft.	1.64	2.12	1.17	1.30
801 to 1200 ft.	2.17	1.57	1.07	1.31
1201 to 1600 ft.	1.27	1.40	1.31	0.77

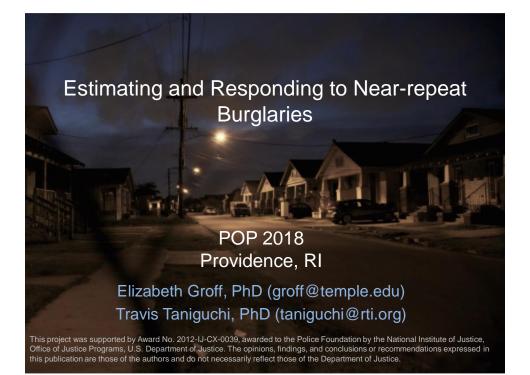





Part 2: NR-CPP- Mapping

- Add the Excel file into your ArcMap session
- Join the information from NRCPC to your shp file
 - Identify the originators (Originator_ID)
 - Identify the repeats (Repeat_ID)
- · Visually display the pattern of each
- Use the hot spot tool to discover where there are concentrations of near repeat events.

These are the areas to focus NR prevention efforts


QUESTIONS?

Take away points

- · Residential burglary CPP varies by city
- CPP should be integrated into analysis process
 - Calculate crime prevention potential prior to designing intervention
 - Examine length of patterns
 - · Drill down the cone of resolution to identify 'where'
- Quantify crime problem
 - Should we undertake this intervention?
 - Was the intervention successful?
- May be relevant for other crime types

